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To answer the question whether all derived (hklO) 
origins are in fact F faces, a detailed study of the 
morphology resulting from the bond strength in the 
calaverite crystal structure is required. This is not a 
simple task, even if at present one knows the atomic 
structure of calaverite, because the microscopic struc- 
ture of the macroscopically fiat faces of an incom- 
mensurate crystal is still obscure. 

4. Concluding remarks 

We still have only a partial understanding of the 
morphology of calaverite. Nevertheless, the complete 
indexing of the 92 independent forms of calaverite 
observed in nature shows the power of the application 
of the (incommensurate) modulation wave vector as 
a fourth base vector. The reason for the stability of 
the satellite faces (see Fig. 3) and the role which the 
so-called (hkl0) origins plays remain unclear, though 
the extended classical geometrical laws of crystal 
morphology seem to hold within a reasonable 
approximation. 

Deep thanks are expressed to J. D. H. Donnay with 
whom this investigation was started. Stimulating dis- 
cussions with P. Bennema about the role of connected 
bonds in calaverite are gratefully acknowledged. 
Thanks are also due to the Stichting ZWO/SON and 
to the Stichting FOM for partial support of the present 
investigation. 
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Abstract 

It is known that the Buerger cell, a + b + c = abs min, 
is ambiguous. Uniqueness is usually achieved by an 
additional system of inequalities which leads to the 
generally accepted Niggli cell. However, this system 
is rather unusual and does not suggest any geometrical 
meaning for the Niggli cell. In this paper four types 

0108-7673/89/010123-09503.00 

of unique cells originating from the Buerger cell are 
introduced by means of simple conditions which have 
an extremal character. Any of these cells may stand 
for a reduced cell and has an express geometrical 
property. One of the four types coincides with the 
Niggli cell, which is thus given a geometrical interpre- 
tation. Systems of inequalities are shown that allow 
recognition of the cell of any type and algorithms are 
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124 REDUCED CELLS BASED ON EXTREMAL PRINCIPLES 

presented for achieving it. An algorithm for obtaining 
all Buerger cells of a lattice is included. The use of 
the reciprocal lattice enables the definition of four 
further unique cells which, however, need not be 
Buerger cells and are not discussed in detail. The 
mathematics must deal with a number of inequalities 
which often contain square roots, and sometimes 
rather intricate technical tricks are required. 

Introduction 

The problem of a reduced cell may be approached 
as a problem of a unique representation of a Bravais 
lattice. 

Every cell determines in a unique way that Bravais 
lattice in which it is embedded. On the other hand 
any Bravais lattice contains an infinite number of 
primitive cells differing in shape and size but entirely 
equivalent for generating the lattice. Thus the problem 
is to choose one of these cells, the so-called reduced 
cell, which would represent in a certain sense the 
whole lattice. 

The main properties required of a reduced cell 
are probably the following: it must be (i) unique; (ii) 
independent of the symmetry of the lattice; (iii) easily 
recognizable; (iv) accessible by means of an 
algorithm; and, last but perhaps not least, (v) it ought 
to have an express geometrical property.* From these 
standpoints, one may ask how to define a suitable 
reduced cell. 

The clue may perhaps be found when we realize 
that in a Bravais lattice most of the primitive cells 
have relatively long edges, large surface, angles near- 
ing zero or 180 °, and a long diameteri  but only a few 
show the opposite properties. And since the reduced 
cell must be unique, it seems sensible to look for it 
among cells with relatively short edges, small surface, 
almost right angles, and a short diameter. 

Going to the extreme case we may require 

a + b + c = abs min,;  (1) 
o r  

o r  

or 

surface = abs min, (2) 

deviation = abs rain, (3) 

diameter = abs min 

where we define 

deviation = [ r r / 2 -  a ] +  ]7r/2-/31+ 17r/2- 3'1. 

(4) 

* From this point of  view the generally used Niggli cell is - or 
at least hitherto was - far from being satisfactory. We consider it 
an important  result of  this paper that a clear geometrical meaning 
of  the Niggli cell has been found (see the section Niggli cell). 

t The diameter  of  a cell is the length of its longest diagonal.  
The symbol 'abs'  before 'min'  indicates that all primitive cells 

of  the lattice are taken into account.  

Of these four requirements the first is most elaborated. 
These cells can be characterized by a simple system 
of inequalities and can be achieved by an algorithm. 
They are generally called Buerger cells and we shall 
make them the basis and starting point of our investi- 
gations. The requirement (2) may be transformed via 
the reciprocal lattice into the first. The questions about 
conditions (3) and (4) are - as far as we know - open. 
In a modified form they will give us a clue for further 
reasoning. 

Here a remark concerning notation is relevant. 
We denote, following general custom, 

A = a . a ,  B = b . b ,  C = c . c ,  

D = b . c ,  E = c . a ,  F = a . b  

and call the sequence 

A,B,  C , D , E , F  (5) 

the description of a cell. If the conditions 

A<_B<_C, (6a) 

if A = B ,  thenlDl<-IEI,  (6b) 

if B=C,  then lEl_<lF], (6c) 

either D > 0 ,  E > 0 ,  F > 0  (6d+)  

or D<-0, E<-0, F-<0 ( 6 d - )  

are fulfilled we say that the description (5) is normal- 
ized. Every cell can be described in a normalized way 
and this description is unique. Thus, with respect to 
(6d+)  and ( 6 d - ) ,  we can distinguish between positive 
and non-positive cells. 

A primitive cell described by a normalized 
sequence (5) is a Buerger cell if and only if the 
inequalities 

21Dl-< B, 2IEI<_ A, 21El-< A, 
(7) 

A+ B + 2 ( D +  E + F)>_O 

hold. 

Ambiguities of Buerger cells 

These cells, with the explicit definition 

Buerger cell: a + b + c = abs min, 

(Buerger, 1957, 1960) meet nicely the requirements 
(ii) to (v) of the Introduction but unfortunately are 
not unique. This was already known to Eisenstein 
(though in terms of the quadratic forms) when he 
published in 1851 a system of additional conditions 
on how to achieve uniqueness. But a complete analy- 
sis was not given until 1973 when a paper by Gruber 
appeared with a table covering all ambiguities of 
Buerger cells and giving the number of these cells in 
every particular case. This list of all ambiguities is 
essential for our present approach and therefore we 
reproduce it here in a modified form (Gruber, 1978) 
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as part of Table 1. The exact meaning is given by the 
following theorem. 

Theorem 1 
Providing Table 1 is given let (5) be a normalized 

description of a Buerger cell* of the lattice L. Then 
the following is true: 

(a) If integers k , j  (1-<k-<24, l<--j<--ik) may be 
found such that the conditions Ck, Ckj of Table 1 are 
fulfilled then the number of different Buerger cells of 
L is equal to ik which is a number greater than 1. 
These Buerger cells are mutually related by the 
matrices Mk~, . .  . ,  Mkik.t 

(b) If such integers k , j  cannot be found the Buerger 
cell of the lattice L is unique.$ 

Remark. Let the numbers (5) fulfil the inequalities 
0 < A -< B <- C and some pair Ck, Ckj of the conditions 
in Table 1. Then (5) may be considered a normalized 
description of a Buerger cell and theorem 1 may be 
applied. 

Search for uniqueness 

Our task is now substantially narrowed: instead of  
selecting the reduced cell from the infinite number 
of all primitive cells we have to take it from the set 
of all Buerger cells, which consists only of at most 
five cells. The choice must depend in some way or 
other on the shape of the cell since the edges of all 
Buerger cells of the same lattice have the same lengths. 
A simple and natural idea is to characterize the shape 
by a certain number and then to take that Buerger 
cell which belongs to the smallest or the greatest value 
- in the hope that it will be unique. 

Thus the final step is to decide on an appropriate 
characteristic of the shape of  the Buerger cells. Which 
expressions should one try? 

First, perhaps, one might try those mentioned in 
the Introduction: So = surface, Wo = deviation, • = 
diameter. 

However, many others may seem suitable, for 
example 

S~ = sin a + sin/3 + sin y, 

$2 = sin 2 a + sin 2/3 + sin 2 y, 

$3 = sin a sin/3 sin y, 

$4 = Ib x el + Ic x a I + lax bl, 
$5 = (b × c)2+ (c x a)2+ (a × b) 2, 

$6 = Ib × cl Ic x al lax  hi 

* That is, fulfilling (6) and (7). 
t To be quite exact, these matrices show possible relations 

between the Buerger cells but need not be unique, since a certain 
Buerger cell may occur in the lattice in various positions. 

But may possibly be found in several positions. 

and similarly 

w, = Icos Icos Icos 
W2 = cos 2 ~ + cos 2/3 + cos 2 Y, 

w3 = Icos ~ cos/3 cos ~1, 

W4= lb. e l+  le. a l+  la. bl, 
W5 = (b.  c) 2 + (c. a) 2 + (a .  b) 2, 

W6 = I(b • c)(c • a ) (a .  b)l. 

Some of them are trivially related: 

S 4 = So~ 2, 

S 6 = ABCS3, 

W 2 = 3 - $ 2 ,  

W5 = BC + CA + A B  - $5, 

W6= ABCW~. 

Omitting these five as superfluous, we find that ten 
expressions 

So, S1,S2, S3,S5, Wo, Wl, W3, W4, (~ (8) 

remain. For any of these we have ascertained the 
order of values which correspond to the particular 
Buerger cells in every one of the 24 ambiguity cases 
in Table 1. The result is shown in the same table. The 
order is indicated by the integers 1, 2, 3 , . . .  which 
start with the greatest value of the expression in 
question. To equal values the same integer is associ- 
ated. For example, from Table 1 it follows that* 

So(l, 2) > So(l, 1), 

W4(10, 1)>  W4(10, 2) = W4(10, 3). 

For entry 17 and the expression Wo three cases are 
possible: 

Wo(17, 1) > Wo(17, 2) 

> Wo(17, 4) 

Wo(17, 1)> Wo(17, 2) 

> Wo(17, 4) 

Wo(17, 1) > Wo(17, 5) 

> Wo(17, 4) 

Which of  these occurs may be 
remarks in Table 1. 

> Wo(17, 5) 

> Wo(17, 3), 

= Wo(17, 5) 

> Wo(17, 3), 

> Wo(17, 2) 

> Wo(17, 3). 

ascertained from the 

The construction of Table 1 constitutes the mathe- 
matical crux of this paper. Several hundred 
inequalities had to be solved on the conditions Ck, 
Ckj. Though many of them were trivial others required 
elaborate technical tricks and tedious calculations. 
The details cannot be given here but some suggestions 
and hints are mentioned in the Mathematics section. 

* The symbol $o(k,j) means the value of the expression So for 
the Buerger cell given in the kth entry on the jth line, etc. 
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Table 1. List of all ambiguities of the Buerger cells, order of values of 

k i k C k C k l  . . . . .  Ckt~ M k l , - . . ,  Mki~ So $1 $2 

1 2 O < 2 D = 2 E < - 2 F = A  lO00lO OOl 2 2 2 
- A = 2 F < - 2 E < 2 D = O  i00 llO 001 i I l 

2 2 B < C  O < 2 D = 2 F < 2 E = A  100 010 001 2 2 
- A = 2 E < 2 F < 2 D = 0  TOO 010 10T 1 1 

3 2 B < C  F < 2 D < 2 F < 2 E = A  100 010 001 2 2 
O < 4 D < 2 F < 2 E = A  100 010 101 1 1 

various expressions and types of cells 

4 2 A = B  O < 4 D = 2 E < - 2 F = A  100 010 001 
- A = 2 F < - 4 D = 4 E < O  010 110 001 

5 3 A = B  E < 2 D < 2 E < - 2 F = A  100 010 001 
O < 4 D < 2 E < - 2 F = A  TOO 110 00i 
- A = 2 F < - 2 D + 2 E < 4 D < O  010 1i0 001 

6 2 A = B < C  O<2F<2D<_2E=A 100 010 001 
- A = 2 E < - 2 D + 2 F < 2 F < O  TOO 010 lOT 

7 2 A < B  O < 2 E = 2 F < A , B = 2 D  100 010 001 
- A < 2 F < 2 E = B + 2 D = O  100 0i0 011 

8 2 A < B  E < 2 D < 2 E < - 2 F = A  100 010 001 
O < 4 D < 2 E < - 2 F = A  TOO 110 001 1 

9 2 A < B  O<2E<-2F=A, 2 E < 2 D < B  100 010 001 2 
- A = 2 F < - 2 E < O , D < O < B + 2 D + 2 E  i00 110 001 1 

10 3 A < B  A = 2 E = 2 F ,  B = 2 D  100 010 001 3 
- A - 2 F = B + 2 D = E = O  100 110 011 2 
- A = - B - 2 D = 2 E = 2 F  TOO 110 001 1 

11 2 A < B = C  O < 4 E = 2 F < A , B = 2 D  100 010 001 2 
- A < 4 E = 4 F < B + 2 D = O  100 001 01/ 1 

12 2 A < B = C 

13 2 A < B = C 

14 3 A < B = C  

15 3 A < B = C  

16 3 A < B = C  

17 5 A < B = C  

18 2 A <  B <  C 

19 2 A < B < C  

20 2 A < B < C  

21 2 A < B < C  

22 2 A < B < C  

23 3 A <  B <  C 

- K = O < A + 2 E = A + 2 F < B + 2 D  100 010 001 1 
- K = O < A + 2 F = B + 2 D < A + 2 E  TOO 010 111 2 

- K = O < A + 2 F < A + 2 E = B + 2 D  100 010 001 1 
- K = O < B + 2 D < A + 2 E = A + 2 F  !00 001 TTT 2 

A = 4 E = 2 F ,  B = 2 D  100 010 001 3 
- A = 4 E = 4 F ,  B + 2 D = O  TOO 001 011 2 
- A = - 2 B - 4 D = 4 E = 2 F  TOO 110 001 I 

F < 2 E < 2 F < A , B = 2 D  100 010 001 3 
O < 4 E < 2 F < A , B = 2 D  TOO 010 011 2 
- B = 2 D ,  F < E < O < A + 2 E + 2 F  TOO 001 011 1 

- K = O < A + 2 F < A + 2 E < B + 2 D  100 010 001 1 
- K = O < A + 2 F < B + 2 D < A + 2 E  TOO 010 111 2 
- K = O < B + 2 D < A + 2 F < A + 2 E  100 001 i l l  3 

A = 2 F < 4 E < 2 A ,  B=2D 100 010 001 5 
O < 4 E < 2 F = A , B = 2 D  TOO 010 011 4 
- A = 2 E + 2 F < 4 E < B + 2 D = O  TOO 001 011 3 
- A - 2 F < 4 E < B + 2 D + 2 E = O  100 110 011 2 
- 2 A < 4 E < 2 F = - A , B + 2 D + 2 E = O  TOO 110 001 1 

A = 4 E = 2 F ,  B = 2 D  100 010 001 2 
- A = - 2 B - 4 D = 4 E = 2 F  TOO 1i0 001 1 

F < 2 E < 2 F < A ,  B = 2 D  i00 010 001 2 
O < 4 E < 2 F < A ,  B = 2 D  TOO 0i0 011 1 

O < 2 F < 2 E < A ,  B = 2 D  100 010 001 2 
- A < 2 E + 2 F < 2 F < B + 2 D = O  I00 010 011 1 

O < 2 F < 2 E = A ,  2 F < 2 D < B  100 010 001 2 
- A = 2 E < 2 F < O ,  D < O < B + 2 D + 2 F  TOO 010 lOT 1 

- K = O < A + 2 E < B + 2 D ,  O < A + 2 F  100 010 001 ! 
- K = O < B + 2 D < A + 2 E ,  O < A + 2 F  i00 010 111 2 

O < 2 F < 2 E = A ,  B = 2 D  100 010 001 3 
- A = 2 E + 2 F < 2 E < B + 2 D = O  100 010 01/ 2 
- A = 2 E < 2 F < B + 2 D + 2 F = O  TOO 010 I0] 1 

S~ S5 Wo 
2 2 1 
1 1 2 

2 2 2 1 
1 1 1 2 

2 2 2 1 
1 1 1 2 

2 2 2 2 2 1 
1 1 1 1 1 2 

3 3 3 3 3 1 
2 2 2 2 2 2 
l 1 1 1 1 3 

2 2 2 2 2 1 
1 1 1 ! 1 2 

2 2 2 2 2 1 
1 I 1 1 1 2 

2 2 2 2 2 1 
1 1 1 1 2 

2 2 2 2 1 
I 1 1 1 2 

3 3 3 3 1 
2 2 2 2 3 
1 1 1 1 2 

2 2 2 2 1 
1 1 1 1 2 

1 I 1 ! 1 
2 2 2 2 2 

1 1 1 1 1 
2 2 2 2 2 

3 3 3 3 1 
2 2 2 2 3 
1 1 1 1 2 

3 3 3 3 1 
2 2 2 2 2 
1 1 I 1 3 

1 1 1 1 1 
2 2 2 2 2 
3 3 3 3 3 

5 5 5 5 111 
4 4 4 4 223 
3 3 3 3 545 
2 2 2 2 434 
1 1 I 1 322 

2 2 2 2 1 
1 1 1 1 2 

2 2 2 2 1 
1 1 1 1 2 

2 2 2 2 1 
I 1 1 1 2 

2 2 2 2 1 
1 1 1 1 2 

1 I 1 I 1 
2 2 2 2 2 

3 3 3 3 1 
2 2 2 2 3 
1 1 1 1 2 

Wl W3 W4 
1 1 1 
2 2 2 

1 1 1 
2 2 2 

1 1 1 
2 2 2 

1 I 1 
2 2 2 

1 i 1 
2 2 2 
3 3 3 

1 1 1 
2 2 2 

I 1 1 
2 2 2 

1 1 1 
2 2 2 

1 I 1 
2 2 2 

1 1 1 
3 3 2 
2 2 2 

! 1 1 
2 2 2 

1 1 1 
2 2 1 

1 ! 1 
2 2 1 

1 1 1 
3 3 2 
2 2 2 

1 1 1 
2 2 2 
3 3 3 

1 1 1 
2 2 1 
3 3 1 

111 111 1 
223 223 2 
545 545 3 
434 434 3 
322 322 3 

I 1 1 

2 2 2 

1 ! 1 
2 2 2 

1 1 1 
2 2 2 

1 1 1 
2 2 2 

1 1 1 
2 2 1 

I 1 1 
3 3 2 
2 2 2 

Types  

1 l, IV 
2 II, I l l  

1 l ,  I V  
2 II, II1 

1 l ,  I V  
2 II,111 

1 I, IV 
2 II, II1 

i I, IV 
2 
3 II, II1 

1 I, I V  
2 11,111 

1 1, IV 
2 I1, III 

1 I, I V  
2 11, II1 

I I, IV 
2 11,111 

1 1, IV 
2 I11 
3 I1 

1 
2 

2 
1 

1 
1 

1 
2 
2 

1 
2 
3 

2 
1 
I 

1 
2 
3 
3 
4 

1 

2 

I 
2 

1 
2 

1 
2 

21 
11 

11 
22 
32 

I, IV 
II, IIl 

II, IV 
I, III 

II, IV 
I, III 

I, IV 
Ill 
II 

I, IV 

II, III 

II, IV 

I, III 

I, IV 

III 

II 

1, IV 
11,111 

I, IV 
11, III 

1,1V 
II, I l l  

I, IV 
II, II1 

II, IV 
1,111 

1,1V 
II1 
I1 
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Table 1 (cont.) 

k i k C k Ckt  . . . . .  Cki ~ Mkl  . . . . .  Mki ~ S 0 S I S 2 S 3 S 5 

24 4 A < B < C  A = 2 F < 4 E < 2 A ,  B = 2 D  lO00lO 001 4 4 4 4 4 
O < 4 E < 2 F = A ,  B = 2 D  100 010 011 3 3 3 3 3 
- A = 2 F < 4 E < B + 2 D + 2 E = O  100 l lO Oil 2 2 2 2 2 
- 2 A < 4 E < 2 F = - A ,  B + 2 D + 2 E = O  700 170 001 1 1 I 1 1 

Wo W, W3 W4 • Types 
111 111 111 1 1 l ,  l V  
223 223 223 2 2 
434 434 434 3 3 III 
322 322 322 3 4 II 

Notation: K = A +  B + 2 ( D +  E + F).  
Remarks 

(1) Those of the conditions Ckj which determine the non-positive cells begin with a minus sign. 
(2) For the expressions W i (i = 0, 1, 3) in entries 17 and 24 the first, or second, or third column is valid if 2E < Q,, or 2E = Q~, or 2E > Q~, respectively, 

where Qo is the (only) root of the function f ( x )  = {(4BC - B2)[4AC - (A - x)2]} I/2 - x 2 + 2Bx - A B -  {[4BC - (B - x)2](4AC - x2)} 1/2 lying between A/2  
and A, Qt = ABt/2/ (  2B1/2-  A1/2), Q3 = B -  [ B( B -  A)] I/2. It is always the case that A > Qo > QI > Q3 > A/2.  The values (5) relate to the Niggli cell, that 
is to the first line in entry 17 or 24. 

(3) For the expression (it, in entry 22 the first column occurs if A +  E + 2 F  < 0, otherwise the second. In entry 23 the same is true if A < 4F. The values 
(5) belong again to the first line. 

The four types of reduced cells 

A detailed inspection of Table 1 shows various types 
of behaviour of the expressions (8) with respect to 
the Buerger.cells. But there are some common features 
which simplify the situation. The main thing in which 
we are interested is the possibility of defining a unique 
cell by means of the smallest and the greatest value 
of the expression in question. 

For this purpose W4 and • apparently cannot be 
used (see e.g. entries 13 and 16). The expressions 

So, $1, $2, $3, $5 (9) 

are perfectly suitable, because they always distinguish 
between two Buerger cells of different shape. This is 
not always true for the expressions 

Wo, W,, W3 (10) 

(see entries 17 and 24) but, fortunately for us, they 
still determine in a unique way those cells which 
correspond to the smallest and the greatest value. 

However, the most important thing is that the 
expressions (9) behave with respect to the Buerger 
cells 'in the same way'* and thus all determine the 
same 'minimum cell' and the same 'maximum cell'. 
This is also done by the expressions (10) although 
their behaviour with respect to other Buerger cells is 
more complicated. Let us put it explicitly. 

Theorem 2 
The expressions 

surface, 1 sin a + sin 13 + sin y, 
sin 2 a + sin 2/3 + sin 2 y, 

sin a sin/3,sin y, 
(bxc)  2+ (cxa )  2+(a×b)  2 

(~e) 

assume their minimum on the set of all Buerger cells 
of a Bravais lattice for the same cell which therefore 
is unique. The same is true for their maximum. Similar 

statements hold for the expressions 

deviation, } 

Icos ~ + cos/31+ cos ~1, (~ )  
cos ~ cos/3 cos ~/. 

This opens the way for the following definition. 

Definition of four types of unique reduced cells 
Type I. Buerger cell with minimum surface: 

a + b + c -- abs min, (9°) = rel min.* 

Type II. Buerger cell with maximum surface: 

a + b + c = abs min, (9°) = rel max. 

Type III. Buerger cell with minimum deviation: 

a + b + c = abs min, (@) = rel min. 

Type IV. Buerger cell with maximum deviation: 

a + b + c = a b s  min, (@)=rel  max. 

These types are indicated in the last column of 
Table 1. In general they overlap and do not constitute 
a decomposition of the set of all Buerger cells into 
classes. 

Mutual relationships 

In any Bravais lattice there are reduced cells of all 
four types; however, they need not be different. 
Apparently a Buerger cell belongs to all four types, 

(I, II, III, IV), 

if and only if it is unique. Otherwise it may belong 
either to one type, or to two types, or to no type 
(symbol 0). The details are as follows: 

( I I ) ,  ( I l l ) ,  ( I ,  I l l ) ,  ( I ,  IV),  ( I I ,  I l l ) ,  ( I f ,  IV),  (0 )  

5 5 4 20 15 4 6. 

The integers in the second row show in how many 
cases the combination in question occurs in Table 1. 
It can be seen that the most frequent association is 

* T h a t  is, S p ( k , j )  < S p ( k , j ' )  is e q u i v a l e n t  to  S q ( k , j )  < S q ( k , j ' )  * T h e  s y m b o l  ' re l  m i n '  m e a n s  t ha t  o n l y  cel ls  fu l f i l l ing  the  c o n d i -  
f o r O < p < 5 , 0 < q < 5 ,  p ~ 4 ~ q ,  1<_k_<24,  l<_j<_ik,  l<_j'<_ik, t i on  w h i c h  p r e c e d e s  a re  t a k e n  in to  a c c o u n t .  
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between the types I and IV: they coincide in 20 out 
of 24 entries of Table 1. We shall find a significant 
interpretation for this fact in the next section. So 
much for Buerger cells. 

For Bravais lattices eight alternatives concerning 
the types of the Buerger cells occur: 

(I, II, III, IV) 
(I, III), (II, IV) 3 
(I, III), (II, IV), (0) 1 
(I, IV), (II, III) 13 
(I, IV), (II, III), (0) 2 
(I, IV), (II), (III) 3 
(I, IV), (II), (III), (0) 1 
(I, IV), (II), (III), (0), (0) 1 

For example, the fifth line shows that among the 24 
ambiguity cases in Table 1 there are two in which the 
lattice has one Buerger cell belonging to types I and 
IV, one Buerger cell belonging to types II and III 
and one Buerger cell belonging to no type. 

Table 2. Determining the type of a Buerger cell 

I IV 

l f K = 0 ,  A < B t h e n  G->0 G<6 
I f K = 0 ,  A < B = C  then H->0 
I f A = 2 E  then F < 2 D  
If A = 2 F  then E <- 2D 
I f B = 2 D t h e n  F <- 2E 
If A + 2 E  =0 then F = 0  
If A + 2 F = 0  then E =0  
l f B + 2 D = 0 t h e n  F = 0  

Notation: G = A + 2 E +  F 
H = A + E + 2 F  
K = A + B + 2 ( D + E + F ) .  

Type  

II I II  

G->0 
G < 0  

H->0 
F>_2D 

E>_2D, A < B  
F>-2E, B < C  

than the deviation) it can hardly compete with the 
traditional long-established concept of the Niggli cell. 

Recognition 

Here we meet the requirement (iii) ofthe Introduction. 

Niggli cell 

The natural question arises of what is the relationship 
between our four types and the commonly used Niggli 
cell (Niggli, 1928). The answer is simple and 
satisfying: 

Theorem 5 
Let (5) be a normalized description of a Buerger 

cell* of a lattice L. Then the type of this cell - if any 
- may be ascertained according to Table 2. 

This can be verified by means of Table 1, if one 
also takes the unambiguous cases into account. 

Theorem 3 
The Niggli cell is identical with the cell of type IV, 

that is, the Niggli cell is the Buerger cell with 
maximum deviation. 

This can be ascertained from Table 1 and the 
inequalities which define the Niggli cell. Let us put 
it explicitly. 

Theorem 4 
A cell of a lattice L is a Niggli cell, if and only if 

the following extremal conditions are fulfilled: 

a + b + c = abs min, 

deviation ] 

[cos a l+ [cos/31+ Icos 71 '= rel max. 

Icos ~ cos/3 cos "/I 

This can also stand for a new definition of the 
Niggli cell. The author was always puzzled by the 
discrepancy between the general use and acceptance 
of the Niggli cell and its somewhat obscure - though 
logically perfect - definition which does not suggest 
any sensible geometrical property of this cell. This is 
now remedied by Theorem 4. 

In view of the results of the preceding paragraph 
the Niggli cell in most cases (but not all) coincides 
with the Buerger cell with minimum surface. Though 
a physicist would probably be more inclined to the 
latter (the surface being more physically significant 

Algorithms 

Six algorithms are presented here on how to achieve 
various kinds of cells. The first, algorithm B, starts 
from an arbitrary primitive cell of the lattice and finds 
a Buerger cell. Which, however (in ambiguous cases), 
cannot be specified beforehand. Such algorithms are 
known (e.g. Gruber, 1973, 1978). The present one 
differs in giving not only the shape but also the 
position~ of the Buerger cell. 

Algorithm AB starts from an arbitrary Buerger cell?- 
and gives a list of all Buerger cells of the lattice. The 
types can be recognized according to the values of 
So and Wo which are simultaneously computed. 

The remaining algorithms TI, TII, T i l l ,  TIV start 
again from an arbitrary Buerger cell~ + and determine 
the Buerger cell of the chosen type.§ 

The position of a cell is related to the reference 
vectors ao, bo, Co which need not correspond to a 
primitive cell. Suitable conventional cells may be 
chosen. In all algorithms the following notation is 
used: 

m = [ m , ,  m2, m33, 

m i = [ m i l , m n ,  mi3] (1<-i<-5) 

* That is, fulfilling (6) and (7). 
t To be quite exact, one of the possible positions. 

And thus can immediately follow algorithm B. 
§ Compare TIV with Kfiv~ & Gruber (1976). 
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and similarly for n, p. If we are interested only in the 
parameters of the cell and not in its position, the 
expressions containing m, n, p can be simply deleted 
from any algorithm. 

All algorithms were tested in all alternatives of the 
initial values by a computer. 

Theorem B 
Let 

a o ,  b o ,  Co ( 1 1 )  

be non-coplanar lattice vectors* of a lattice L. Let 
the vectors 

a = mlao+ m2bo+ m3co, 

b = nlao+ n2bo+ n3eo, (12) 

c = plao+p2bo+p3Co 

determine an arbitrary primitive cell of L with the 
corresponding description (5).t Carry out algorithm 
B. Then the new values (5) stand for a normalized 
description of a Buerger cell of the lattice/¢ and (12) 
(with the new values m~, n~, Pi) is one of the possible 
positions of this cell. 

Algorithm B (determining a Buerger cell) 

B0 Input A, B, C, D, E, F, m, n, p. 
B1 Carry out sub-algorithm N. 
B2 I R A < 2  F ,  l e t j = i n t ( F / A + 0 . 5 ) ,  

B =  B + j 2 A - 2 j F ,  D =  D - j E ,  F =  F - j A ,  
n = n - j m  and go to the point B1. 

B3 If A < 2  E ,  l e t j = i n t ( E / A + 0 . 5 ) ,  
C = C +j2A - 2jE, D = D - j F ,  E = E - j A ,  
p = p - j m  and go to the point B1. 

B4 If B<2lDl ,  l e t j = i n t ( D / B + 0 . 5 ) ,  
C = C  + j 2 B - 2 j D ,  D =  D - j B ,  E =  E - j F ,  
p = p - j n  and go to the point B1. 

B5 L e t K = A + B + 2 ( D + E + F ) , M = A + B + 2 F .  
B6 If K < 0 ,  l e t j = i n t [ K / ( 2 M ) ] ,  

C = C + j 2 M - 2 j ( D + E ) ,  D = D - j ( B + F ) ,  
E = E - j ( A + F ) ,  p= p - j ( m + n )  and go to the 
point B1. 

B7 Output: A, B, C, D, E, F, m, n, p. 

is the normalized description, 

milao-F mi2bo+ mi3eo, 

n i l a o +  ni2bo+ ni3Co, 

P~lao + Pi2bo + Pi3Co 

one of the possible positions,* Sot the surface, and 
Woi the deviation of the ith Buerger cell. 

Algorithm A B  (determining all Buerger cells) 

ABO Input A, B, C, D, E, F, m, n, p. 
AB1 L e t h = 0 .  
AB2 Carry out sub-algorithms N and R. 
AB3 I f A = 2 F ,  l e t D = E - D , n = m - n a n d c a r r y  

out N, R. 
AB4 I f A = B = 2 F ,  let E = E - D ,  F = - F ,  

m = m - n  and carry out N, R. 
AB5 I f A = 2 E ,  l e t D =  F - D , p = m - p a n d c a r r y  

out N, R. 
AB6 I f B = 2 D ,  l e t E = F - E , p = n - p a n d c a r r y  

out N, R. 
AB7 I f B = C = 2 D ,  let D = - D ,  F = F - E ,  

n = n - p  and carry out N, R. 
AB8 I f A < B , A + B + 2 ( D + E + F ) = 0 , 1 e t  D =  

B+ D +  F, E = A +  E + F, p = m + n + p  and 
carry out N, R. 

AB9 If A < B = C, A + B + 2( D + E + F) = O, Iet 
D = B + D + E ,  F = A + E + F ,  n = m + n + p  
and carry out N, R. 

ABIO = AB9. 
A B l l  I f A + 2 F = 0 , 1 e t  D = D + E ,  F = - F ,  

n = m + n and carry out N, R. 
AB12 I f A + 2 E = 0 , 1 e t  D = D + F ,  E = - E ,  

p = m + p and carry out N, R. 
AB13 I f B + 2 D = 0 , 1 e t  D = - D ,  E = E + F ,  

p = n + p and carry out N, R. 
AB14 I f A < B = 2 D ,  let E = F - E , p = n - p a n d  

carry out N, R. 
AB15 If A = B = 2 F ,  let D = E - D , n = m - n a n d  

carry out N, R. 
AB16 Output: h, A, B, C, 

D1, El,  F1, Sol, Wol, ml, nl, Pl, 

bh, Eh, Fh, Sob, Woh, mh, nh, Ph. 

Theorem A B  
Let (11) be non-coplanar lattice vectors* of a lattice 

L. Let the vectors (12) with the corresponding descrip- 
tion (5)t determine a Buerger cell of L. Carry out 
algorithm AB. Then h is the number of all Buerger 
cells of the lattice L. For i = 1 , . . . ,  h, 

A, B, C, Di, Ei, Fi 

* They need not belong to a primitive cell of L. 
t It need not be normalized. 

Theorem 7v~ 
Let ~ be one of the symbols I, II, III, IV. Let (11) 

be non-coplanar lattice vectorst of a lattice L. Let 
the vectors (12) with the corresponding description 
(5)~ determine a Buerger cell of L. Carry out algorithm 
T°~. Then the new values (5) stand for a normalized 
description of the cell of the type ~ of the lattice L 

* It need not coincide with the position given by the matrices 
Mkj in Table 1. 

t They need not belong to a primitive cell of L. 
~: It need not be normalized. 
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and (12) (with the new values mi, n;, p~) is one of  the 
possible positions* of the cell. 

Algorithm TI (for determining the cell of type I) 

TI0 Input A, B, C, D, E, F, m, n, p. 
TI1 Carry out sub-algori thm N. 
TI2 I fF<O=B+2D,  I e t D = - D , E = E + F ,  

p = n + p and carry out N. 
TI3 I fF<O=A+2E,  l e t D = D + F , E = - E ,  

p = m + p and carry out N. 
TI4 If E<O=A+2F, let D=D+E,  F=-F ,  

n = m + n and carry out N. 
TI5 I f B = 2 D ,  2 E < F ,  let E = F - E , p = n - p a n d  

carry out N. 
TI6 I f A = 2 E ,  2 D < F ,  l e t D = F - D , p = m - p a n d  

carry out N. 
TI7 I f A = 2 F ,  2 D < E ,  l e t D = E - D , n = m - n a n d  

carry out N. 
TI8 I f A < B , A + 2 E + F < 0 =  

A+B+2(D+E+F) , l e t  D = B + D + F ,  
E = A + E + F , p = m + n + p a n d c a r r y o u t  N. 

TI9 If A < B = C , A + E + 2 F < O =  
A + B + 2 ( D + E + F ) ,  let D = B + D + E ,  F= 
A + E + F, n = m + n + p and carry out N. 

TI10 Output: A, B, C, D, E, F, m, n, p. 

Algorithm TII (for determining the cell of type II) 

TII0 I n p u t A ,  B, C , D ,  E, F , m , n , p .  
T i l l  Carry out sub-algori thm N. 
TII2 I f A = B = 2 F ,  let E = E - D ,  F = - F ,  

m = m - n  and carry out N. 
TII3 I f A = 2 F < B ,  E < 2 D ,  let D = E - D ,  

n = m - n  and carry out N. 
TII4 IfA=2E, F<2D, l e t D = F - D , p = m - p a n d  

carry out N. 
TII5 I f B = 2 D ,  F < 2 E ,  l e t E = F - E , p = n - p a n d  

carry out N. 
TII6 I f B = C = 2 D ,  let D = - D ,  F = F - E ,  

n = n - p  and carry out N. 
TII7 If A + B + 2 ( D + E + F ) = O < A + 2 E + F ,  let 

D = B + D + F ,  E = A + E + F ,  p = m + n + p  
and carry out N. 

TII8 Output: A, B, C, D, E, F , m , n , p .  

Algorithm TIII  (for determining the cell of type III) 

T i l l / =  TIIi for i = 0 ,  1 , . . . , 6 .  
TI I I j  = T I ( j +  1) for j = 7 ,  8,9. 

Algorithm TIV (for determining the cell of type IV) 

TIVi= Tli for i = 0 , 1 , . . . , 7 .  
TIVj = T I I ( j -  1) for j = 8, 9. 

* It need not coincide with the position given by the matrices 
Mkj in Table 1. 

Sub-algorithm N (normalization) 

N1 If A >  B or A =  B, ID[> IEI, exchange A ~ B ,  
D~--~  E ,  m ~--~ n .  

N2 If B > C  or B=C,  IEI>IFI, exchange B~--~C, 
E ~ F, n*-~p and go to the point N1. 

N3 If n e i t h e r D > 0 ,  E > 0 ,  F > 0 n o r D < _ 0 ,  E_<0, 
F<-0 ,  let E = - E ,  F = - F ,  m = - m .  

N4 I f n e i t b e r D > 0 ,  E > 0 ,  F > 0 n o r D _ < 0 ,  E<_0, 
F_<0, let D = - D ,  F = - F ,  n = - n  and go to 
the point N3. 

N5 Return. 

Sub-algorithm R (recording the parameters of the 
Buerger cells) 

R1 If h = 0 or 

[D,E,F]~[Di,  E,,G] for i =  1 , . . . ,  h, 

let h = h + l ,  

[Dh, Eh, Fh] = [D, E, F],  
mh = m, nh = n, Ph = P, 
Sob = 2( BC - D 2) 1/2 + 2( CA - E2) 1/2 

+ 2 ( A B  - F2) 1/2, 
Woh = l ' 5 r r -  arccos [ D/(BC) ~/2] 

- arccos [ EJ/(CA) 1/2] 
- arccos FI/(AB)*/2]. 

R2 Return. 

R e c i p r o c a l  l a t t i c e  

The one-to-one correspondence between the primi- 
tive cells of  a direct lattice L and the primitive cells 
of  its reciprocal lattice L* makes it possible to define 
four further types of unique cells which, however, 
need not be Buerger cells. We shall say that the cell 
C of the direct lattice L belongs to type I* if  the 
corresponding cell C* of the reciprocal lattice L* 
belongs to type I, and similarly for the other types. 
An explicit definition reads as follows: 

Type I*: 
a* + b* + c* = abs min*, surface* = rel min* , t  

Type II*: 

a * +  b * +  c* = abs min*, surface* = rel max*, 

Type III*: 

a* + b* + c* = abs min*, deviation = rel min*, 

Type IV*: 

a* + b* + c* = abs min*, deviation = rel max*. 

This may seem to be a mere formal meaning.  But 
the matter appears  in a better light when we realize 
that the sum a * +  b * +  c* relating to the cell C* is 

~ The symbol 'abs min*' means that all primitive cells of the 
reciprocal lattice are taken into account, whereas 'rel min*' admits 
only those cells of L* which fulfil the preceding condition. 
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proport ional  to the surface of  the corresponding cell 
C and vice versa. This enables one to write the 
definitions of  types I*, II* in terms of the direct lattice: 

Type I*: 

surface = abs min, a + b + c = rel min,  

Type II*: 

surface = abs min, a + b + c = rel max. 

Types III* and IV* can be also characterized by 
the parameters  of  the direct lattice; however, the 
expressions are more complicated.  

Mathematics 

The main feature dis t inguishing this paper  from most 
other works on Bravais lattices is the use of 
inequali t ies instead of equations. Fortunately most 
of  them can be easily solved. Difficulties may arise 
only with the expressions So, $1 and W0. The first 
two lead sometimes to the inequali ty 

pll/2 + Qll/2 < p~/2 + Q~/2 ( pi >- o, Q, ___ o, i = 1, 2) 

which certainly holds if  

P,+Q,<P2+O2, P,Q,<P2Q2. 
Surprisingly this sufficient condition, which saves 
making two further squares, is fulfilled in all our cases. 

The expression Wo can be written 

Wo-- 1 . 5 r r - a r c c o s  [ D / ( B C )  1/2] 

- arccos [IE[/( CA)'/2] 

- arccos [IFI/(AB)'/2]. 

The most difficult cases we face here have the form 

arccos Pl + arccos ql < arccos P2 + arccos q2. 

The funct ion arccos can be evaded by means  of the 
formula  

arccos p + arccos q 

= arccos {pq-[(1-p2)(1-q2)]  '/2} 

which holds for 0-< p - 1, 0-< q <- 1. 
However, an inequal i ty  of  the form 

P + Q I / 2 ~  RI /2  ( P>~O, Q~>0,  R - > 0 )  

may still remain.  It is equivalent  to 

4 P 2 Q ~ ( R - P 2 - Q )  2 

on the assumpt ion  that R-> p 2 +  Q. This can always 
be verified. 

The reader  who wants to obtain a better survey of 
the situation is advised to construct pictures of the 
sets of  points [D, E, F]  fulfilling (6), (7) and one of  
the inequali t ies 

O < A = B = C ,  O < A = B < C ,  

O < A < B = C ,  O < A < B < C  

where A, B, C are considered fixed. These sets are 
pairs of  polyhedra.  If  (and only if) a point  [D, E, F]  
belongs to one of these polyhedra  then (5) stands for 
a normal ized description o f a  Buerger cell. The condi- 
tions Ckj from Table 1 determine simple geometrical  
figures (points, straight segments, triangles and 
trapeziums) on the surface of these polyhedra.  

Concluding remarks 

Any of the eight definit ions we have introduced con- 
sists of  two condit ions which are on different levels. 
The main condit ion (based on an absolute extreme) 
selects a small  number  of cells from the infinite set 
of  all primitive cells, and the addit ional  condi t ion 
(based on a relative extreme) picks up from these 
selected cells the final unique reduced cell. Though 
there cannot  be logical objections to such a procedure 
it seems nevertheless somewhat  unsatisfactory. A 
simple compact  geometrical ly significant one-level 
condit ion would probably  be preferred - when it is 
found. 

The author  thanks his wife for carefully checking 
his calculations.  
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